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Abstract. The generalized collective mode approach is applied for the study of transverse
dynamics in binary mixtures. The scheme is based on simultaneous treatment of the conserved
total mass current and the mutual mass-concentration currents, as well as their time derivatives.
The condition for existence of optic-like transverse modes in a binary system is derived. It is shown
that high mutual diffusion and a tendency towards demixing prevent the emergence of transverse
optic-like modes. Optic-like excitations are found in a Lennard-Jones Kr–Ar fluid and the liquid-
metallic alloys Mg70Zn30 and Li4Pb, while in the ‘fast-sound’ dense gas mixture He75Ar25 they
do not appear for small wavenumbers.

1. Introduction

Over the last two decades the dynamical theory of pure liquids has advanced at a rapid pace.
With the active use of computer simulations and memory function formalism, the study of
dynamics has progressed from a simple investigation of diffusion and dynamical structure
factors to a sophisticated theory of hydrodynamic and kinetic processes. For the dynamics
of binary liquids the situation is quite different. Only the simplest dynamic properties such
as self-diffusion and mutual diffusion are understood fairly well, while the mechanism of
formation of the collective excitation spectrum and the mode contributions to total spectral
functions are not yet finally established.

Collective excitations in binary liquids have been the subject of active research during the
last five years (see, e.g., [1–7]). Two branches (low- and high-frequency ones) of collective
excitations have been found to contribute to the longitudinal dynamics of binary systems with
disparate mass, but their origin is still under study.

In the hydrodynamic limit (k → 0, ω → 0 with k and ω being the wavevector and
frequency, respectively), the collective mode spectrum can be studied analytically [8, 9]. For
the transverse dynamics of liquids there exists only one conserved variable (the density of
the total transverse current Ĵt (k, t)), and in the hydrodynamic limit the corresponding time
correlation function Ftt (k, t) has the well-known single-exponential form [8, 9]

Ftt (k, t) � M

N
kBT exp{−ηk2t/ρ} (1)

where ρ = M/V and η are a mass density and a shear viscosity, respectively. This result
is valid within the precision of the zeroth-frequency moment and can be applied in the long-
wavelength limit for simple fluids as well as their mixtures. According to (1), a binary liquid
is treated in the hydrodynamic limit as an effective ‘averaged’ one-component fluid and all the
specific features due to the difference in species are then neglected.
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A generalized collective mode (GCM) method was suggested in [10] for investigating
dynamical properties of a simple Lennard-Jones liquid over a wide range of wavevectors.
The main idea of this new method was to extend the basis set of dynamical variables by
taking, in addition to the hydrodynamic ones, their time derivatives, which were supposed to
describe short-time processes in liquids. In general, the basis set of Nv dynamical variables
generated an Nv ×Nv secular equation from generalized Langevin equations, and resulted in
Nv generalized collective modes (eigenvalues). In [11] this method of generalized collective
modes was modified into a parameter-free approach and in [12] was advanced to a high-
number-of-variables approximation, taking into account the first three time derivatives of the
hydrodynamic variables in the basis set.

Beyond the hydrodynamic region, short-time kinetic processes become important and,
in the case of transverse dynamics, shear waves emerge in fluid-like systems [8, 9]. Shear
waves are in fact kinetic modes [11, 13, 14] supported by liquid in the region of intermediate
wavenumbers k, where elastic-like behaviour is dominant over viscous behaviour. Shear waves
exist in both pure liquids and their mixtures.

Starting from the 1970s, there have been several reports about the optic-like excitations in
ionic binary liquids (see, e.g., [15, 16]). In particular, it was found for LiF that the theoretical
results for the spectrum of optic excitations are in good correlation with direct observations of
polariton emission in the hot solid phase. However, the general opinion was that optic modes
are very specific features of ionic liquids only.

The goal of this study is to investigate within the GCM method the origin of high-frequency
branches in spectra of transverse collective modes in binary liquids and to focus our main
attention on the role of mass-concentration fluctuations, which cause a dissimilarity to the case
of a pure fluid. The transverse dynamics is much easier to investigate than the longitudinal
dynamics because of the absence of coupling with energy fluctuations. Some results for high-
frequency transverse dynamics can be easily generalized to the longitudinal case when energy
fluctuations are neglected. Thus, it is expected that the results of this study will be very useful
for understanding the key features of longitudinal dynamics as well.

2. Theoretical framework

We define two operators of currents Ĵt (k, t) and Ĵx(k, t):(
Ĵx

Ĵt

)
=

(
x2 −x1

1 1

) (
Ĵ1

Ĵ2

)
(2)

as the linear combinations of partial transverse current operators and

Ĵα(k, t) = 1√
N

Nα∑
i=1

mαv
tr
αi exp(ik · rαi(t)) α = 1, 2 (3)

where rαi and vtrαi denote the position and the transverse component of the velocity of the ith
particle in the αth species, respectively, and x1 = m1N1/M and x2 = m2N2/M are the mass
concentrations of particles of that species: M = m1N1 +m2N2 = m̄N . The time correlation
functions of these transverse current operators are defined in the following way:

Fαβ(k, t) = 〈Ĵα(k, 0)Ĵ ∗
β (k, t)〉 α, β = t, x

where the asterisk means complex conjugation.
The operator Ĵt (k, t) is a conserved dynamical variable and its time autocorrelation

function behaves in the hydrodynamic limit as described by (1). A variable complementary
to the total current operator Ĵt (k, t) is the mass-concentration current Ĵx(k), which describes
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the process that is orthogonal in the sense of the thermodynamic fluctuation theory to those
connected with the total current Ĵt (k), so Fxt (k, 0) = Ftx(k, 0) = 0. It is seen from (2) and (3)
that at k = 0 the dynamical variable Ĵx(k) describes opposite motions of particles of different
species. Also, the mutual diffusion coefficient D12 (see, e.g., [17]) is directly related to the
function Fxx(k, t) at k = 0:

D12 = 1

m̄Sxx(0)

∫ ∞

0
Fxx(0, t) dt (4)

where Sxx(0) is the value of the ‘mass-concentration–mass-concentration’ static structure
factorSxx(k) [18] at k = 0. Another important point is that in ionic liquids withQ1N1+Q2N2 =
0, where Qα denotes the charge of particles of the αth species, the transverse charge current
density

Ĵ tQ(k) = Q1

m1
Ĵ1(k) +

Q2

m2
Ĵ2(k) ≡

(
Q1

m1
− Q2

m2

)
Ĵx(k) (5)

is just proportional to the mass-concentration current Ĵx(k).
To achieve an understanding of the main features in the dispersion of transverse branches,

we performed some analytical analysis of the spectrum for the case where the effects of coupling
between different branches was neglected. One can write down the macroscopic equations of
motion (a chain for memory functions) for the simplest nontrivial case, when the first-order
memory function is taken in the Markovian approximation, in the following form:

iω〈Ĵα(k)〉ω − 〈 ˆ̇J α(k)〉ω = 0

ω̄2,α(k)〈Ĵα(k)〉ω +
(

iω + ϕ̃α1 (k, 0)
)
〈 ˆ̇J α(k)〉ω = 0

(6)

where 〈· · ·〉ω means the Fourier transform of a nonequilibrium averaged dynamical variable
[19], the subscript α denotes either total current t or mass concentration x, ω̄2,α(k) is the
second-order frequency moment, and the first-order memory function is connected with the
k-dependent Maxwell-like time of relaxation τα(k):

ω̄2,α(k) = 〈 ˆ̇J α(k) ˆ̇J α(−k)〉
〈Ĵα(k)Ĵα(−k)〉

ϕ̃α(k, 0) = 1

τα(k)
.

In (6), for the case of the total transverse operator (α = t) one can immediately estimate
that

ˆ̇J t (k) = iLNĴt (k) = ikσ̂tr (k)

where σ̂tr (k) is a transverse component of the microscopic stress tensor σ̂αβ(k). For ω̄2,t (k)

we have

ω̄2,t (k) = k2

m̄kBT
〈σ̂tr (k)σ̂tr (−k)〉 = k2

ρ
G(k)

whereG(k) is the generalized shear modulus (rigidity modulus). For the k-dependent Maxwell-
like time of relaxation, in the hydrodynamic limit one has the well-known result

τt (k)

∣∣∣
k→0

= η/G(0).
In the case of mass-concentration fluctuations, when α = x in (6), the quantities ω̄2,x(k)

and τx(k) tend to constant values in the limit k → 0.
We derived from the two sets of two macroscopic equations of motion (see (6)) the

following analytical expressions for the time correlation functions Ftt (k, t) and Fxx(k, t),
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which in the approximation accepted were within the precision of second-order frequency
moments (details are given in [20]):

Fαα(k, t)

Fαα(k)
= − z−α (k)

z+
α(k)− z−α (k)

e−z+
α(k)t +

z+
α(k)

z+
α(k)− z−α (k)

e−z−α (k)t α = t, x (7)

where the corresponding eigenvalues are

z±α (k) = 1

2τα(k)
±

[
1

4τ 2
α (k)

− ω̄2,α(k)

]1/2

α = t, x. (8)

For the case of eigenvalues z±t (k), expression (8) takes the form

z±t (k) = 1

2τt (k)
±

[
1

4τ 2
t (k)

− k2

ρ
G(k)

]1/2

. (9)

In the hydrodynamic limit one gets from equation (9) two relaxing modes with the purely real
eigenvalues

z+
t (k) = z2R

t (k) = G

η
− η

ρ
k2 z−t = z1R

t = η

ρ
k2

one of which (z1R
t ) corresponds to the hydrodynamic viscodiffusive mode well known from

standard Navier–Stokes hydrodynamics, while the other is the lowest-lying kinetic mode with
fixed damping coefficient in the hydrodynamic limit. We see that the kinetic mode z2R

t (k)

describes the shear relaxation [8,21] known for simple fluids (note that limk→0 z
2R
t (k) = 1/τt ).

The properties of the solutions (9) change significantly when k increases, namely, for k > kH ,
where the value of kH can be estimated from the equation

k2
H = ρ

4τ 2
t (k)G(k)

�
[
ρG(k)

4η2(k)

]
k→0

= ρG

4η2
(10)

with the k-dependent shear viscosity η(k). Hence one gets two propagating collective modes

z±t = ±iωt(k) + σt (k)

when k > kH . For large k the dispersion of these modes is given by

ωt(k)|k�kH = k [G(k)/ρ]1/2 (11)

which formally coincides with result known from the theory of elastic media for shear waves.
The condition for the existence of propagating mass-concentration waves (or optic-like

collective modes)

z±x = ±iωx(k) + σx(k) (12)

is obtained from (8) in the form

ω̄2,x(k)τ
2
x0(k)

4
< 1 (13)

where

τx0(k) = 1

Fxx(k, t = 0)

∫ ∞

0
Fxx(k, t) dt = (ω̄2,x(k)τx(k))

−1 (14)

is the zeroth-order correlation time. It is easy to check out that in the Gaussian approximation
for the time correlation function Fxx(k, t) (the limit of large wavenumbers) the condition (13)
is always satisfied. In the hydrodynamic limit we can rewrite (13) as follows:

δ ≡ ω̄2,x(0)D
2
12

S2
xx(0)

4(x1x2kBT )2
< 1. (15)
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It is seen that there are several factors which determine the existence of optic-like excitations
in the hydrodynamic limit, namely, the mutual diffusion D12, the structure factor Sxx(0),
temperature, and the second-order frequency moment of Fxx(k, t). Thus, the high mutual
diffusion and tendency towards demixing in the system (when Sxx(k = 0) is large) prevent the
emergence of optic-like transverse modes. When condition (15) is valid, the frequency and
damping of optic-like modes are given by

ωx(0) = Im(z+
x) =

√
(1 − δ)ω̄2,x(0)

σx(0) = Re(z±x ) =
√
δω̄2,x(0).

(16)

The original result is the relationship (16) between the frequency of the optic-like mode at
k = 0 and its damping. When the damping reaches the value

√
ω̄2,x(0), the long-wavelength

optic-like modes disappear. Hence, when the parameter δ is slightly smaller than 1, the optic-
like branch in the spectrum can even look like a pseudo-sound one. In this case the overdamped
optic-like branch can exhibit rapidly decaying behaviour when k → 0.

3. Results and discussion

In order to study the peculiarities of transverse dynamics in binary liquids, discussed in
the previous section, we performed molecular dynamics (MD) simulations in the standard
microcanonical ensemble with a cubic box for:

(i) a Lennard-Jones ‘ordinary’ Kr–Ar liquid (at T = 116 K, n = 0.0182 Å−3) [22];
(ii) a Lennard-Jones ‘fast-sound’ mixture He75Ar25 (at T = 160 K, n = 0.013 Å−3) [23];

(iii) another classical ‘fast-sound’ liquid Li4Pb (at T = 1085 K, n = 0.045 58 Å−3) [24], and
(iv) a glass-forming metallic alloy Mg70Zn30 (at T = 833 K, n = 0.0435 Å−3).

For the case of Kr–Ar and Mg70Zn30, a system of 864 particles was considered, while for
He75Ar25 and Li4Pb, 1000 particles were taken. During the production run over 3 × 105 time
steps, the time evolution of the basis dynamical variables was traced to evaluate relevant static
and time correlation functions. Interatomic potentials for Li4Pb and Mg70Zn30 were taken
from [25] and [26], respectively.

The operators Ĵt (k, t) and Ĵx(k, t) in the long-wavelength limit, in fact, describe processes
with different timescales. This statement is illustrated in figures 1(a), 1(b), where the time
correlation functions Ftt (k, t) and Fxx(k, t) obtained for Kr–Ar are shown. It is seen that in
contrast to the function Ftt (k, t), which is very close to the single-exponential form (1) at
k → 0, the function Fxx(k, t) has a minimum at short times for all k, which usually indicates
the existence of propagating modes. This means that even for small k-values there exist high-
frequency propagating transverse waves in a neutral binary liquid, which cannot be described
within the standard scheme of linear hydrodynamics.

Two dynamical variables (2) were used to generate a basis set A(8) of eight operators for
calculations of the transverse collective mode spectra:

A(8)(k, t) =
{
Jt (k, t), Jx(k, t), J̇t (k, t), J̇x(k, t), J̈t (k, t), J̈x(k, t),

...

Jt (k, t),
...

Jx(k, t)
}
. (17)

The basis A(8) contains the first three time derivatives of dynamical variables (2) to take into
account short-time effects in the transverse dynamics. The spectra of collective modes were
obtained from 8 × 8 secular equations derived from generalized Langevin equations in the
Markovian approximation (see, for details, [5, 11, 19]). All matrix elements of the secular
equations were evaluated directly in the molecular dynamics simulations.
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Figure 1. Time correlation functions Ftt (k, t) (a) and Fxx(k, t) (b) for the Lennard-Jones liquid
Kr–Ar. Timescale: τ = 4.598 ps.
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In figures 2 and 3 the imaginary parts of the eigenvalues (shown by crosses) represent
the dispersion of propagating transverse modes in KrAr, He75Ar25, Mg70Zn30, and Li4Pb.
In general four branches of propagating excitations are obtained within the eight-variable
approximation of the GCM method. In fact, all these modes are kinetic ones, because they
cannot be found within the standard hydrodynamic treatment. The two highest branches z3(k)

and z4(k) are overdamped because of the large damping coefficients (real parts of eigenvalues),
and they contribute only to short-time behaviour. Therefore we are mainly interested in the
behaviour of the two lower branches z1(k) and z2(k) with comparable damping coefficients
for k � 1 Å−1. In agreement with the hydrodynamic theory, the general feature of the lowest
branch z1(k) is the existence of a propagating gap at small k-values (k < kH ). The width
of the propagation gap for the transverse sound waves kH corresponds to a k-range where
the viscous behaviour of the liquid is dominant over the elastic behaviour. The quantities
kH obtained for KrAr, Mg70Zn30, Li4Pb, and He75Ar25 are 0.35 Å−1, 0.05 Å−1, 0.45 Å−1,
and 1.29 Å−1, respectively. For Mg70Zn30 the width of the propagation gap was found to be
smaller than the smallest wavenumber reached in the molecular dynamics, so an additional
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Figure 2. Imaginary parts of eigenvalues for Lennard-Jones mixtures: (a) liquid KrAr; (b) a dense
gas system He75Ar25. Results obtained for the ‘coupled’ set A(8) and for the separated sets A(4t),
A(4x), A(4a), and A(4b) are shown by symbols (×) and different lines, respectively. The lines are
given only in restricted regions, where the coupling is not significant and the spectra obtained for
eight- and four-variable sets correlate well. The double arrows show the positions ofQp/2.
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Figure 3. Imaginary parts of eigenvalues for liquid-metallic alloys: (a) Mg70Zn30; (b) Li4Pb.
Triangles show the spectrum of transverse collective excitations found for amorphous Mg70Zn30
at room temperature (from reference [26]). All other notation is as in figure 2.

extrapolation procedure [13] for the matrix elements of the secular equation was used for small
wavenumbers k in order to estimate the value of kH . Such an extrapolation procedure can be
very easily performed by setting the known hydrodynamic asymptotes for each matrix element,
and its application to the investigation of transverse dynamics as well as the generalized (k, ω)-
dependent shear viscosity of liquid Cs near the melting point showed very good agreement
with experimental data (see [13] for details).

More interesting for analysis is the behaviour of the second branch z2(k). It is clearly seen
for KrAr and Mg70Zn30 that the imaginary parts of these eigenvalues tend to certain nonzero
frequencies when k → 0. For Li4Pb the same result is still valid, while for He75Ar25 the
propagating modes z2(k) disappear inside the propagation gap for k � 0.6 Å−1.

The GCM method allows one also to study the spectra of collective excitations for separated
subsets of the basis set A(8). Let us consider the separated sets of dynamic variables:

A(4α) =
{
Jα(k, t), J̇α(k, t), J̈α(k, t),

...

Jα(k, t)
}

α = t, x.

In this case one can obtain the spectra of eigenvalues when the coupling between the total
current and mass-concentration fluctuations is neglected. In a similar way, an analysis of the
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separated ‘partial’ sets

A(4i) =
{
Ji(k, t), J̇i(k, t), J̈i(k, t),

...

Ji(k, t)
}

i = 1, 2

allows one to exclude direct coupling between particles in the different species. If the coupling
effects are small, then the eigenvalues obtained for the separated sets and the ‘coupled’ set
A(8) have to be very close, and vice versa if the coupling is strong, one would find a significant
difference between the corresponding eigenvalues. The results obtained for the separated sets
are shown in figures 2, 3 by different lines (see the descriptions in the figure captions). It
is seen that at small k the appropriate explanation of transverse dynamics can be given in
terms of the total and mass-concentration currents, while for k � Qp/2 (Qp is the position
of the main peak of the static structure factor SNN(k)) all four branches are well described
within the ‘partial’ sets A(4i). Hence one can conclude that for large k, the collective modes
z1(k) and z2(k) reflect the dynamics of heavy and light components, respectively. Therefore,
there is an analogy with the crystalline state, for which it is known [27] that the frequencies
of optic (high-frequency) and acoustic (low-frequency) phonon excitations on the boundary
of the Brillouin zone depend on 1/

√
ml and 1/

√
mh, respectively, where mh and ml are the

masses of heavy and light particles in a binary system. The analogy is straightforward, since
Qp ∼ 2π/〈a〉 with 〈a〉 the average interparticle distance in liquid. Hence, the value Qp/2 is
like the boundary of the first pseudo-Brillouin zone. It is easy to show that within the precision
of second-frequency moments, the ratio of the imaginary parts of the branches z2(k) and z1(k)

in the limit k → ∞ for a binary liquid will be
√
mh/ml , i.e. the same as is expected for the

ratio of the frequencies of the optic and acoustic branches at the boundary of the Brillouin zone
for a two-component solid, obtained in the harmonic approximation.

For small k the propagating modes z2(k) in the dense binary liquids KrAr, Mg70Zn30, and
Li4Pb appear due to the mass-concentration current fluctuations only. Taking into account
that these fluctuations are caused by opposite motions of particles of the different species,
and recalling equation (5), we can conclude that the propagating modes z2(k) correspond to
optic-like transverse excitations. This conclusion is supported by comparing our results found
for Mg70Zn30 with the data obtained for amorphous Mg70Zn30 (shown by triangles in figure 3)
at room temperature [26, 28]. The high-frequency modes identified in the amorphous state as
‘optic phonon excitations’ are just slightly above our results. Taking into account the higher
density and the lower temperature of the amorphous state considered [26,28], this seems to be
quite reasonable.

The study of crossover from the ‘collective’ behaviour (at small k-values) to the ‘partial’
one (for k > Qp/2) can be completed by the discussion of the mode contributions to different
time correlation functions or spectral functions. Within the Nv-variable approximation of the
method of GCM, the solution for time correlation functions can be written in the form

Fij (k, t) =
Nv∑
α=1

Gαij (k)e
−zα(k)t (18)

where Gαij (k) are the complex weighting coefficients of the mode contributions. They are
expressed [11] via eigenvectors associated with an eigenvalue zα(k). Taking into account the
symmetry properties of the weighting coefficients and assuming that among theNv eigenvalues
there are Np pairs of complex conjugate eigenvalues (propagating modes):

zα(k) = ±iωα(k) + σα(k)

andNr purely real ones (relaxing modes), one can rewrite (18) in a widely accepted form [8,18]:

Fij (k, t) =
Nr∑
r=1

Arije
−σr t +

Np∑
p=1

[Bpij cos(ωpt) + Cpij sin(ωpt)]e
−σpt . (19)
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It is obvious that
Nr∑
r=1

Arij (k) +
Np∑
p=1

B
p

ij (k) = Fij (k, 0)

which gives in fact the zeroth-order sum rules. By taking the Fourier transform of expression
(19), one obtains the mode contributions to the spectral function Cij (k, ω), which include:
Nr central Lorentzians with amplitudes Arij (k); Np noncentral Lorentzians with amplitudes
B
p

ij (k); and Np so-called ‘non-Lorentzian’ corrections with the amplitudes Cpij (k). In figure 4

we show the normalized amplitudes B̄pii (k) = B
p

ii(k)/Fii(k, 0) with i = t, x, 1, 2 for the
lowest two propagating modes (shear waves and optic-like excitations) in the case of Mg70Zn30.
For k > kH within the eight-variable approximation, there are four branches of propagating
modes, i.e. Nr = 0 and Np = 4. One can see in figure 4 that for large k-values the branches
z1(k) and z2(k) define almost completely the partial autocorrelation functions FZnZn(k, t) and
FMgMg(k, t), respectively. The same can be said about the contributions of these modes at small
k-values to the autocorrelation functions Ftt (k, t) and Fxx(k, t). Thus, the results obtained are
in agreement with our analysis of the collective mode spectrum given above.

0
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-B1

ZnZn-
B2

ZnZn
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1

0 0.5 1 1.5 2 2.5 3 3.5
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xx
-
B1

MgMg-
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Figure 4. Normalized weighting coefficients B̄pij (k) of Mg70Zn30 found for the lowest two
propagating excitations z1(k) (closed boxes) and z2(k) (open boxes) for four different time
correlation functions. Solid and dashed lines in the upper frame correspond the contributions
to the autocorrelation functions Ftt (k, t) and FZnZn(k, t), respectively. In the lower frame the solid
and dashed lines correspond to the cases of functions Fxx(k, t) and FMgMg(k, t), respectively.
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One remark should be added here about the definition of collective excitations. Within the
method of GCM the collective modes are associated with the eigenvalues of the generalized
hydrodynamic matrix [19]. These eigenvalues give the poles of relevant correlation Green
functions, which is the generally accepted definition of collective excitations in statistical
physics. Sometimes another definition is used to obtain the dispersion of collective excitations
from partial spectral functions via the positions of the maxima of the partial spectral functions.
This approach is, in fact, taken over from the case of pure liquids, where it works reasonably
well. However, when the contributions of different propagating modes to partial spectral
functions are comparable, it can cause substantial problems with the estimation of the collective
mode spectrum.

In figure 5 the transverse spectral functionsCttt (k, ω),C
t
xx(k, ω),C

t
11(k, ω), andCt22(k, ω)

for Mg70Zn30, obtained as the numerical Fourier transforms of the relevant MD-derived time
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Figure 5. Spectral functionsCtt (k, ω) (open boxes),Cxx(k, ω) (crosses),CMgMg(k, ω) (solid line),
and CZnZn(k, ω) (dashed–dotted line) for Mg70Zn30 at two k-values. The spectral functions are
obtained numerically as Fourier transforms of the relevant MD time correlation functions.
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correlation functions, are shown for two k-values. One can see that the spectral functions of
dynamical variables Jt and Jx for k = 0.232 Å−1 have well-defined maxima, the positions
of which correspond closely to the frequencies of collective excitations obtained in this study
by the GCM method. Spectral functions of partial dynamical variables for the smallest k-
value have the first peak located nearly at the frequency of the shear wave branch, which
is much more pronounced in both partial spectral functions than the shoulder (or heavily
smeared peak) connected with the optic-like excitations. For the case of large k-values, the
situation is quite the opposite. One can see in figure 5 that for k = 2.022 Å−1 the partial
spectral functions have a one-peak structure, while the functions Cttt (k, ω) and Ctxx(k, ω) each
exhibit a main peak (nearly at the position of the maximum for Ct22(k, ω)) and a shoulder
(close to the position of the maximum for Ct11(k, ω)). This is consistent with our discussion
on the mode contributions: at small k-values the spectrum of the lowest two eigenvalues
correlates with positions of maxima of the spectral functions Cttt (k, ω) and Ctxx(k, ω), while
for k > Qp/2 the maxima of the partial spectral functions correspond to the relevant
eigenvalues. We note that estimating the collective excitations from just the peak positions
of the partial spectral functions can lead potentially to incorrect results for small k-values,
where instead of two branches of collective excitations their merger would be observed. This
problem will be discussed in more detail elsewhere, together with results for the longitudinal
dynamics.

In figure 6 one can see how the condition (13) is fulfilled for the binary systems investigated.
It is seen that only for He75Ar25 are the mass-concentration waves not supported in the long-
wavelength limit (for k < 1.7 Å−1). This explains why the optic-like transverse modes
have not been found in the spectrum of He75Ar25 (see figure 2). Another general feature is
seen from figure 6: for the smaller width of the propagation gap kH (which corresponds to
the case of higher viscosity), the left-hand side of condition (13) is fulfilled better and the
long-wavelength optic-like excitations are supported by a liquid. This can be understood
quite easily from the expression for the width of the propagation gap (10). If the viscosity
of the system increases, the diffusive motion of particles will decrease, and the liquid will
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Figure 6. The left-hand side of condition (13) as a function of k for: Mg70Zn30, Kr–Ar, Li4Pb,
and He75Ar25. Reduced units: kBT = 1, m̄ = 1, and kmin = 1 are used, where kmin is the smallest
k-value reached in molecular dynamics.



Optic-like excitations in binary liquids 6075

become more rigid, which favours optic-like excitations. For the case of very large viscosity,
as one has in the amorphous phase, the width of the propagation gap tends to zero, and
optic-like modes along with transverse sound excitations become well-defined collective
excitations.

4. Conclusions

We conclude with the following remarks:

(i) Transverse optic-like excitations can exist in dense binary mixtures of simple liquids and
they arise as a result of mass-concentration fluctuations.

(ii) The condition for existence of these excitations is derived. In particular, it is shown that the
high mutual diffusion and tendency towards demixing in the system prevent the emergence
of optic-like modes in the long-wavelength limit.

(iii) The general feature of transverse collective excitations is their ‘partial’ character beyond
the first pseudo-Brillouin zone when k � Qp/2. For small k the collective modes reflect
the collective properties of the system being described correctly in terms of total and
mass-concentration currents.

(iv) Optic-like transverse excitations are found to be supported in Li4Pb, while in He75Ar25 they
are suppressed. On the basis of this result we can assume that two different mechanisms
of the ‘fast-sound’ phenomenon in binary liquids exist: the kinetic one found by Campa
and Cohen [29] and the mechanism of optic-like excitations discussed in this study.
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